Bài tập lượng giác lớp 10 cơ bản có đáp án
Mời chúng ta học sinh cùng tìm hiểu thêm tư liệu tiếp sau đây với 226 bài tập Lượng giác lớp 10 bao gồm lời giải nhằm mục đích góp những em học sinh từ bỏ học tập, tự ôn thi công dụng, sẵn sàng tốt nhất có thể mang lại kỳ thi sắp tới. Đồng thời đó cũng là tư liệu xem thêm có lợi giành cho những thầy thầy giáo vào vấn đề soạn đề thi với giáo án. Mời các bạn thuộc xem thêm.
Bạn đang xem: Bài tập lượng giác lớp 10 cơ bản có đáp án

MATHtoàn quốc.COM CHÖÔNG 1: COÂNG THÖÙC LÖÔÏNG GIAÙCI. Ñònh nghóa Treân maët phaúng Oxy cho ñöôøng troøn löôïng giaùc taâm O baùn kính R=1 vaø ñieåm M treân ñöôøng troøn löôïng giaùc maø sñ AM = β vôùi 0 ≤ β ≤ 2π Ñaët α = β + k2π,k ∈ Z Ta ñònh nghóa: sin α = OK cos α = OH sin α tgα = vôùi cos α ≠ 0 cos α cos α cot gα = vôùi sin α ≠ 0 sin αII. Baûng giaù trò löôïng giaùc cuûa moät soá cung (giỏi goùc) ñaëc bieät Goùc α ( ) 0 0o π ( ) 30o π ( ) 45o π ( ) 60o π ( ) 90oGiaù trò 6 4 3 2sin α 0 1 2 3 1 2 2 2cos α 1 3 2 1 0 2 2 2tgα 0 3 1 3 || 3cot gα || 3 1 3 0 3III. Heä thöùc cô baûn sin 2 α + cos2 α = 1 1 π 1 + tg2α = vôùi α ≠ + kπ ( k ∈ Z ) cos α 2 2 1 t + cot g2 = vôùi α ≠ kπ ( k ∈ Z ) sin 2 αIV. Cung lieân keát (Caùch nhôù: cos ñoái, sin buø, tang sai π ; phuï cheùo) a. Ñoái nhau: α vaø −α sin ( −α ) = − sin α cos ( −α ) = cos α tg ( −α ) = −tg ( α ) cot g ( −α ) = − cot g ( α ) www.MATHViệt Nam.com MATHcả nước.COMb. Buø nhau: α vaø π − αsin ( π − α ) = sin αcos ( π − α ) = − cos αtg ( π − α ) = − tgαcot g ( π − α ) = − cot gαc. Sai nhau π : α vaø π + αsin ( π + α ) = − sin αcos ( π + α ) = −cosαtg ( π + α ) = t gαcot g ( π + α ) = cot gα πd. Phuï nhau: α vaø −α 2 ⎛π ⎞sin ⎜ − α ⎟ = cos α ⎝2 ⎠ ⎛π ⎞cos ⎜ − α ⎟ = sin α ⎝2 ⎠ ⎛π ⎞tg ⎜ − α ⎟ = cot gα ⎝2 ⎠ ⎛π ⎞cot g ⎜ − α ⎟ = tgα ⎝2 ⎠ π πe.Sai nhau : α vaø + α 2 2 ⎛π ⎞sin ⎜ + α ⎟ = cos α ⎝2 ⎠ ⎛π ⎞cos ⎜ + α ⎟ = − sin α ⎝2 ⎠ ⎛π ⎞tg ⎜ + α ⎟ = − cot gα ⎝2 ⎠ ⎛π ⎞cot g ⎜ + α ⎟ = − tgα ⎝2 ⎠ www.MATHnước ta.com MATHtoàn nước.COM f. sin ( x + kπ ) = ( −1) sin x, k ∈ Z k cos ( x + kπ ) = ( −1) cos x, k ∈ Z k tg ( x + kπ ) = tgx, k ∈ Z cot g ( x + kπ ) = cot gxV. Coâng thöùc coäng sin ( a ± b ) = sin a cos b ± sin b cosa cos ( a ± b ) = cosa cos b ∓ sin asin b tga ± tgb tg ( a ± b ) = 1 ∓ tgatgbVI. Coâng thöùc nhaân ñoâi sin 2a = 2sin a cosa cos2a = cos2 a − sin 2 a = 1 − 2sin 2 a = 2 cos2 a − 1 2tga tg2a = 1 − tg2a cot g2a − 1 cot g2a = 2 cot gaVII. Coâng thöùc nhaân ba: sin3a = 3sin a − 4sin3 a cos3a = 4 cos3 a − 3cosaVIII. Coâng thöùc haï baäc: 1 sin 2 a = (1 − cos2a ) 2 1 cos2 a = (1 + cos2a ) 2 1 − cos2a tg2a = 1 + cos2aIX. Coâng thöùc chia ñoâi a Ñaët t = tg (vôùi a ≠ π + k2 π ) 2 www.MATHtoàn nước.com MATHnước ta.COM 2t sin a = 1 + t2 1 − t2 cosa = 1 + t2 2t tga = 1 − t2X. Coâng thöùc bieán ñoåi toång thaønh tích a+b a−b cosa + cos b = 2 cos cos 2 2 a+b a−b cosa − cos b = −2sin sin 2 2 a+b a−b sin a + sin b = 2 cos sin 2 2 a+ b a−b sin a − sin b = 2 cos sin 2 2 sin ( a ± b ) tga ± tgb = cosa cos b sin ( b ± a ) cot ga ± cot gb = sin a.sin bXI. Coâng thöùc bieån ñoåi tích thaønh toång 1 cosa.cos b = ⎡ cos ( a + b ) + cos ( a − b ) ⎤⎦ 2⎣ −1 sin a.sin b = ⎡ cos ( a + b ) − cos ( a − b ) ⎤⎦ 2 ⎣ 1 sin a.cos b = ⎡⎣sin ( a + b ) + sin ( a − b ) ⎤⎦ 2 sin 4 a + cos4 a − 1 2Baøi 1: Chöùng minc = sin 6 a + cos6 a − 1 3 Ta coù: sin 4 a + cos4 a − 1 = ( sin 2 a + cos2 a ) − 2sin 2 a cos2 a − 1 = −2sin 2 a cos2 a 2 Vaø: sin 6 a + cos6 a − 1 = ( sin 2 a + cos2 a )( sin 4 a − sin 2 a cos2 a + cos4 a ) − 1 = sin 4 a + cos4 a − sin 2 a cos2 a − 1 = (1 − 2sin 2 a cos2 a ) − sin 2 a cos2 a − 1 = −3sin 2 a cos2 a www.MATHViệt Nam.com MATHViệt Nam.COM sin 4 a + cos4 a − 1 −2sin 2 a cos2 a 2 Do ñoù: = = sin 6 a + cos6 a − 1 −3sin 2 a cos2 a 3 1 + cos x ⎡ (1 − cos x ) ⎤ 2Baøi 2: Ruùt goïn bieåu thöùc A = = ⎢1 + ⎥ sin x ⎢⎣ sin 2 x ⎥⎦ 1 πTính giaù trò A neáu cos x = − vaø 0 2 3 Vaäy sin x = 2 2 4 4 3 Do ñoù A = = = sin x 3 3Baøi 3: Chöùng minch caùc bieåu thöùc sau ñaây khoâng phuï thuoäc x: a. A = 2 cos4 x − sin 4 x + sin2 x cos2 x + 3sin 2 x 2 cot gx + 1 b. B = + tgx − 1 cot gx − 1 a.
Xem thêm: Điểm Chuẩn Học Viện Kỹ Thuật Quân Sự 2019, Điểm Chuẩn Học Viện Kỹ Thuật Quân Sự
Ta coù: A = 2 cos4 x − sin 4 x + sin2 x cos2 x + 3sin2 x ⇔ A = 2 cos4 x − (1 − cos2 x ) + (1 − cos2 x ) cos2 x + 3 (1 − cos2 x ) 2 ⇔ A = 2 cos4 x − (1 − 2 cos2 x + cos4 x ) + cos2 x − cos4 x + 3 − 3cos2 x ⇔ A = 2 (khoâng phuï thuoäc x) b. Vôùi ñieàu kieän sin x.cosx ≠ 0,tgx ≠ 1 2 cot gx + 1 Ta coù: B = + tgx − 1 cot gx − 1 www.MATHnước ta.com MATHđất nước hình chữ S.COM 1 +1 2 tgx 2 1 + tgx ⇔ B= + = + tgx − 1 1 − 1 tgx − 1 1 − tgx tgx 2 − (1 − tgx ) 1 − tgx ⇔ B= = = −1 (khoâng phuï thuoäc vaøo x) tgx − 1 tgx − 1Baøi 4: Chöùng minh 1 + cosa ⎡ (1 − cosa ) ⎤ cos2 b − sin 2 c 2 ⎢1 − 2 ⎥+ 2 2 − cot g2 b cot g2 c = cot ga − 1 2sin a ⎢ sin a ⎥ sin bsin c ⎣ ⎦ Ta coù: cos2 b − sin 2 c * − cot g2 b.cot g2 c sin b.sin c 2 2 cotg2 b 1 = − 2 − cot g2 b cot g2 c sin c sin b 2 ( ) ( ) = cot g2 b 1 + cot g2 c − 1 + cot g2 b − cot g 2 b cot g2 c = −1 (1) 1 + cosa ⎡ (1 − cosa ) ⎤ 2 * ⎢1 − ⎥ 2sin a ⎢ sin 2 a ⎥ ⎣ ⎦ 1 + cosa ⎡ (1 − cosa ) ⎤ 2 = ⎢1 − ⎥ 2sin a ⎢ 1 − cos2 a ⎥ ⎣ ⎦ 1 + cosa ⎡ 1 − cosa ⎤ = 1− 2sin a ⎢⎣ 1 + cosa ⎥⎦ 1 + cosa 2 cosa = . = cot ga (2) 2sin a 1 + cosa Laáy (1) + (2) ta ñöôïc ñieàu phaûi chöùng minch ngừng.Baøi 5: Cho ΔABC tuøy yù vôùi bố goùc ñeàu laø nhoïn. Tìm giaù trò nhoû nhaát cuûa Phường = tgA.tgB.tgC Ta coù: A + B = π − C Neân: tg ( A + B) = − tgC tgA + tgB ⇔ = − tgC 1 − tgA.tgB ⇔ tgA + tgB = −tgC + tgA.tgB.tgC Vaäy: Phường = tgA.tgB.tgC = tgA + tgB + tgC www.MATHVN.com MATHtoàn nước.COM AÙp duïng baát ñaúng thöùc Cauchy cho bố soá döông tgA,tgB,tgC ta ñöôïc tgA + tgB + tgC ≥ 3 3 tgA.tgB.tgC ⇔ Phường ≥ 33 Phường. ⇔ 3 P2 ≥ 3 ⇔P≥3 3 ⎧ tgA = tgB = tgC ⎪ π Daáu “=” xaûy ra ⇔ ⎨ π ⇔ A = B=C= ⎪⎩ 0 y " = − (1 − t ) + 4t 3 2 Ta coù : y " = 0 Ù (1 − t ) = 8t 3 3 ⇔ 1 − t = 2t 1 ⇔t= 3 1 ⎛1⎞ Ta coù y(1) = 1; y(-1) = 3; y ⎜ ⎟ = 27 ⎝ 3⎠ 1 Do ñoù : Max y = 3 vaø Miny = x∈ x∈ 27 b/ Do ñieàu kieän : sin x ≥ 0 vaø cos x ≥ 0 neân mieàn xaùc ñònh ⎡ π ⎤ D = ⎢ k2π, + k2π ⎥ vôùi k ∈ ⎣ 2 ⎦ Ñaët t = cos x vôùi 0 ≤ t ≤ 1 thì t = cos x = 1 − sin x 4 2 2 Neân sin x = 1 − t4 Vaäy y = 1 − t − t treân D " = < 0,1> 8 4 −t 3 Thì y " = − 1 MATHtoàn nước.COMBaøi 7: Cho haøm soá y = sin4 x + cos4 x − 2m sin x cos xTìm giaù trò m ñeå y xaùc ñònh vôùi moïi x Xeùt f (x) = sin 4 x + cos4 x − 2m sin x cos x f ( x ) = ( sin 2 x + cos2 x ) − m sin 2x − 2 sin 2 x cos2 x 2 1 f ( x) = 1 − sin2 2x − m sin 2x 2 Ñaët : t = sin 2x vôùi t ∈ < −1, 1> y xaùc ñònh ∀x ⇔ f ( x ) ≥ 0∀x ∈ R 1 2 ⇔ 1− t − mt ≥ 0 ∀t ∈ < −1,1> 2 ⇔ g ( t ) = t 2 + 2mt − 2 ≤ 0 ∀t ∈ < −1,1> Do Δ " = m2 + 2 > 0 ∀m neân g(t) coù 2 nghieäm phaân bieät t1, t2 Luùc ñoù t t1 t2 g(t) + 0 - 0 Do ñoù : yeâu caàu baøi toaùn ⇔ t1 ≤ −1 MATHnước ta.COM Maët khaùc : sin 4 α + cos4 α = ( sin 2 α + cos2 α ) − 2 sin 2 α cos2 α 2 = 1 − 2sin2 α cos2 α 1 = 1 − sin2 2α 2 π 7π 3π 5π Do ñoù : A = sin4 + sin4 + sin4 + sin4 16 16 16 16 ⎛ π π ⎞ ⎛ 4 3π 3π ⎞ = ⎜ sin 4 + cos4 ⎟ + ⎜ sin + cos4 ⎟ ⎝ 16 16 ⎠ ⎝ 16 16 ⎠ ⎛ 1 π⎞ ⎛ 1 3π ⎞ = ⎜ 1 − sin 2 ⎟ + ⎜ 1 − sin 2 ⎟ ⎝ 2 8⎠ ⎝ 2 8 ⎠ 1⎛ π 3π ⎞ = 2 − ⎜ sin 2 + sin 2 ⎟ 2⎝ 8 8 ⎠ 1⎛ π π⎞ ⎛ 3π π⎞ = 2 − ⎜ sin 2 + cos2 ⎟ ⎜ do sin = cos ⎟ 2⎝ 8 8⎠ ⎝ 8 8⎠ 1 3 = 2− = 2 2Baøi 9 : Chöùng minch : 16 sin 10o .sin 30o .sin 50o .sin 70o = 1 A cos 10o 1 Ta coù : A = = (16sin10ocos10o)sin30o.sin50o.sin70o cos 10 o cos 10 o 1 ⎛1⎞ o ( ⇔ A= 8 sin 20o ) ⎜ ⎟ cos 40o . cos 20o cos 10 ⎝2⎠ 1 o ( ⇔ A= 4 sin 200 cos 20o ) . cos 40o cos10 1 o ( ⇔ A= 2 sin 40o ) cos 40o cos10 1 cos 10o ⇔ A= sin 80 o = =1 cos10o cos 10o A B B C C ABaøi 10 : Cho ΔABC . Chöùng minh : tg tg + tg tg + tg tg = 1 2 2 2 2 2 2 A+B π C Ta coù : = − 2 2 2 A+B C Vaäy : tg = cot g 2 2 A B tg + tg ⇔ 2 2 = 1 A B C 1 − tg .tg tg 2 2 2 ⎡ A B ⎤ C A B ⇔ ⎢ tg + tg ⎥ tg = 1 − tg tg ⎣ 2 2⎦ 2 2 2 www.MATHnước ta.com MATHcả nước.COM A C B C A B ⇔ tg tg + tg tg + tg tg = 1 2 2 2 2 2 2 π π π πBaøi 11 : Chöùng minh : 8 + 4tg + 2tg + tg = cot g ( *) 8 16 32 32 π π π π Ta coù : (*) ⇔ 8 = cot g − tg − 2tg − 4tg 32 32 16 8 cos a sin a cos a − sin a 2 2 Maø : cot ga − tga = − = sin a cos a sin a cos a cos 2a = = 2 cot g2a 1 sin 2a 2 Do ñoù : ⎡ π π⎤ π π (*) ⇔ ⎢ cot g − tg ⎥ − 2tg − 4tg = 8 ⎣ 32 32 ⎦ 16 8 ⎡ π π⎤ π ⇔ ⎢ 2 cot g − 2tg ⎥ − 4tg = 8 ⎣ 16 16 ⎦ 8 π π ⇔ 4 cot g − 4tg = 8 8 8 π ⇔ 8 cot g = 8 (hieån nhieân ñuùng) 4Baøi :12 : Chöùng minh : ⎛ 2π ⎞ ⎛ 2π ⎞ 3 a/ cos2 x + cos2 ⎜ + x ⎟ + cos2 ⎜ − x⎟ = ⎝ 3 ⎠ ⎝ 3 ⎠ 2 1 1 1 1 b/ + + + = cot gx − cot g16x sin 2x sin 4x sin 8x sin16x ⎛ 2π ⎞ ⎛ 2π ⎞ a/ Ta coù : cos2 x + cos2 ⎜ + x ⎟ + cos2 ⎜ − x⎟ ⎝ 3 ⎠ ⎝ 3 ⎠ 1 1⎡ ⎛ 4π ⎞ ⎤ 1 ⎡ ⎛ 4π ⎞⎤ = (1 + cos 2x ) + ⎢1 + cos ⎜ 2x + ⎟ ⎥ + ⎢1 + cos ⎜ − 2x ⎟ ⎥ 2 2⎣ ⎝ 3 ⎠⎦ 2 ⎣ ⎝ 3 ⎠⎦ 3 1⎡ ⎛ 4π ⎞ ⎛ 4π ⎞⎤ = + ⎢ cos 2x + cos ⎜ 2x + ⎟ + cos ⎜ − 2x ⎟ ⎥ 2 2⎣ ⎝ 3 ⎠ ⎝ 3 ⎠⎦ 3 1⎡ 4π ⎤ = + ⎢ cos 2x + 2 cos 2x cos ⎥ 2 2⎣ 3⎦ 3 1⎡ ⎛ 1 ⎞⎤ = + ⎢ cos 2x + 2 cos 2x ⎜ − ⎟ ⎥ 2 2⎣ ⎝ 2 ⎠⎦ 3 = 2 cos a cos b sin b cos a − sin a cos b b/ Ta coù : cot ga − cot gb = − = sin a sin b sin a sin b www.MATHViệt Nam.com MATHtoàn nước.COM sin ( b − a ) = sin a sin b sin ( 2x − x ) 1 Do ñoù : cot gx − cot g2x = = (1 ) sin x sin 2x sin 2x sin ( 4x − 2x ) 1 cot g2x − cot g4x = = ( 2) sin 2x sin 4x sin 4x sin ( 8x − 4x ) 1 cot g4x − cot g8x = = ( 3) sin 4x sin 8x sin 8x sin (16x − 8x ) 1 cot g8x − cot g16x = = (4) sin16x sin 8x sin16x Laáy (1) + (2) + (3) + (4) ta ñöôïc 1 1 1 1 cot gx − cot g16x = + + + sin 2x sin 4x sin 8x sin16xBaøi 13 : Chöùng minh : 8sin3 180 + 8sin2 180 = 1 Ta coù: sin180 = cos7đôi mươi ⇔ sin180 = 2cos2360 - 1 ⇔ sin180 = 2(1 – 2sin2180)2 – 1 ⇔ sin180 = 2(1 – 4sin2180+4sin4180)-1 ⇔ 8sin4180 – 8sin2180 – sin180 + 1 = 0 (1 ) ⇔ (sin180 – 1)(8sin3180 + 8sin2180 – 1) = 0 ⇔ 8sin3180 + 8sin2180 – 1 = 0 (bởi vì 0 MATHtoàn nước.COM 1 = ( sin4 x + cos4 x ) − sin2 2x 4 ⎛3 1 ⎞ 1 = ⎜ + cos 4x ⎟ − (1 − cos 4x ) ( do keát quaû caâu a ) ⎝4 4 ⎠ 8 3 5 = cos 4x + 8 8 c/ Ta coù : sin 8 x + cos8 x = ( sin 4 x + cos4 x ) − 2 sin 4 x cos4 x 2 1 2 ( 3 + cos 4x ) − sin4 2x 2 = 16 16 2 1 1 ⎡1 ⎤ = 16 ( 9 + 6 cos 4x + cos 4x ) − 8 ⎢⎣ 2 (1 − cos 4x )⎥⎦ 2 9 3 1 1 = + cos 4x + (1 + cos 8x ) − (1 − 2 cos 4x + cos2 4x ) 16 8 32 32 9 3 1 1 1 = + cos 4x + cos 8x + cos 4x − (1 + cos 8x ) 16 8 32 16 64 35 7 1 = + cos 4x + cos 8x 64 16 64Baøi 15 : Chöùng minc : sin 3x.sin3 x + cos 3x.cos3 x = cos3 2x Caùch 1: Ta coù : sin 3x.sin3 x + cos 3x.cos3 x = cos3 2x = ( 3sin x − 4 sin 3 x ) sin 3 x + ( 4 cos3 x − 3 cos x ) cos3 x = 3sin4 x − 4 sin6 x + 4 cos6 x − 3cos4 x = 3 ( sin 4 x − cos4 x ) − 4 ( sin 6 x − cos6 x ) = 3 ( sin 2 x − cos2 x )( sin 2 x + cos2 x ) −4 ( sin 2 x − cos2 x )( sin 4 x + sin 2 x cos2 x + cos4 x ) = −3 cos 2x + 4 cos 2x ⎡⎣1 − sin 2 x cos2 x ⎤⎦ ⎛ 1 ⎞ = −3 cos 2x + 4 cos 2x ⎜ 1 − sin 2 2x ⎟ ⎝ 4 ⎠ ⎡ ⎛ 1 ⎞⎤ = cos 2x ⎢ −3 + 4 ⎜ 1 − sin 2 2x ⎟ ⎥ ⎣ ⎝ 4 ⎠⎦ = cos 2x (1 − sin 2 2x ) = cos3 2x Caùch 2 : Ta coù : sin 3x.sin3 x + cos 3x.cos3 x ⎛ 3sin x − sin 3x ⎞ ⎛ 3 cos x + cos 3x ⎞ = sin 3x ⎜ ⎟ + cos 3x ⎜ ⎟ ⎝ 4 ⎠ ⎝ 4 ⎠ 3 1 = ( sin 3x sin x + cos 3x cos x ) + ( cos2 3x − sin2 3x ) 4 4 www.MATHViệt Nam.com MATHtoàn quốc.COM 3 1 = cos ( 3x − x ) + cos 6x 4 4 1 = ( 3cos 2x + cos 3.2x ) 4 1 = ( 3cos 2x + 4 cos3 2x − 3cos 2x ) ( boû doøng naøy cuõng ñöôïc) 4 = cos3 2x 3 +1Baøi 16 : Chöùng minch : cos12o + cos18o − 4 cos15o.cos 21o cos 24 o = − 2 Ta coù : cos12 + cos18 − 4 cos15 ( cos 21 cos 24 ) o o o o o = 2 cos15o cos 3o − 2 cos15o ( cos 45o + cos 3o ) = 2 cos15o cos 3o − 2 cos15o cos 45o − 2 cos15o cos 3o = −2 cos15o cos 45o = − ( cos 60o + cos 30o ) 3 +1 =− 2Baøi 17 : Tính P. = sin2 50o + sin2 70 − cos 50o cos70o 1 1 1 Ta coù : Phường. = (1 − cos100o ) + (1 − cos140o ) − ( cos120o + cos 20o ) 2 2 2 1 1 ⎛ 1 ⎞ P = 1 − ( cos100o + cos140o ) − ⎜ − + cos 20o ⎟ 2 2⎝ 2 ⎠ 1 1 P. = 1 − ( cos120o cos 20o ) + − cos 20o 4 2 5 1 1 5 Phường = + cos 20o − cos 20o = 4 2 2 4 8 3Baøi 18 : Chöùng minh : tg30o + tg40o + tg50o + tg60o = cos 20o 3 sin ( a + b ) AÙp duïng : tga + tgb = cos a cos b Ta coù : ( tg50 + tg40 ) + ( tg30o + tg60o ) o o sin 90o sin 90o = + cos 50o cos 40o cos 30o cos 60o 1 1 = + sin 40 cos 40 o o 1 cos 30o 2 2 2 = + sin 80o cos 30o ⎛ 1 1 ⎞ = 2⎜ + ⎟ ⎝ cos10 cos 30o ⎠ o www.MATHnước ta.com MATHVN.COM ⎛ cos 30o + cos10o ⎞ = 2⎜ o ⎟ ⎝ cos10 cos 30 ⎠ o cos 20p cos10o =4 cos10o cos 30o 8 3 = cos 20o 3Baøi 19 : Cho ΔABC , Chöùng minch : A B C a/ sin A + sin B + sin C = 4 cos cos cos 2 2 2 A B C b/ socA + cos B + cos C = 1 + 4 sin sin sin 2 2 2 c/ sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C d/ cos2 A + cos2 B + cos2 C = −2 cos A cos B cos C e/ tgA + tgB + tgC = tgA.tgB.tgC f/ cot gA.cot gB + cot gB.cot gC + cot gC.cot gA = 1 A B C A B C g/ cot g + cot g + cot g = cot g .cot g .cot g 2 2 2 2 2 2 A+B A−B a/ Ta coù : sin A + sin B + sin C = 2sin cos + sin ( A + B ) 2 2 A + B⎛ A−B A + B⎞ = 2 sin ⎜ cos + cos ⎟ 2 ⎝ 2 2 ⎠ C A B ⎛ A + B π C⎞ = 4 cos cos cos ⎜ bởi vì = − ⎟ 2 2 2 ⎝ 2 2 2⎠ A+B A−B b/ Ta coù : cos A + cos B + cos C = 2 cos cos − cos ( A + B ) 2 2 A+B A−B ⎛ A+B ⎞ = 2 cos cos − ⎜ 2 cos2 − 1⎟ 2 2 ⎝ 2 ⎠ A+B⎡ A−B A + B⎤ = 2 cos ⎢ cos − cos +1 2 ⎣ 2 2 ⎥⎦ A+B A ⎛ B⎞ = −4 cos sin sin ⎜ − ⎟ + 1 2 2 ⎝ 2⎠ C A B = 4 sin sin sin + 1 2 2 2 c/ sin 2A sin 2B + sin 2C = 2 sin ( A + B ) cos ( A − B ) + 2 sin C cos C = 2 sin C cos(A − B) + 2 sin C cos C = 2sin C
Chuyên mục: Tổng hợp