Bài 1 trang 153 sgk toán 10

     

Hướng dẫn giải Bài §3. Công thức lượng giác, Chương VI – Cung và góc lượng giác. Công thức lượng giác, sách giáo khoa Đại số 10. Nội dung bài giải bài 1 2 3 4 5 6 7 8 trang 153 154 155 sgk Đại số 10 bao gồm tổng hợp công thức, lý thuyết, phương pháp giải bài tập phần đại số có trong SGK để giúp các em học sinh học tốt môn toán lớp 10.

Bạn đang xem: Bài 1 trang 153 sgk toán 10

Lý thuyết

I. Công thức cộng

\(cos\,(a-b)=cos\,a\,cos\,b+sin\,a\,sin\,b\)

\(cos\,(a+b)=cos\,a\,cos\,b-sin\,a\,sin\,b\)

\(sin\,(a-b)=sin\,a\,cos\,b-cos\,a\,sin\,b\)

\(sin\,(a+b)=sin\,a\,cos\,b+cos\,a\,sin\,b\)

\(tan\,(a+b)=\frac{tan\,a-tan\,b}{1+tan\,a\,tan\,b}\)

\(tan\,(a-b)=\frac{tan\,a+tan\,b}{1-tan\,a\,tan\,b}\)

II. Công thức nhân đôi

1. Công thức nhân đôi

\(sin\,2a=2\,sin\,a\,cos\,a\)

\(cos\,2a=cos^2\,a-sin^2\,a=2cos^2\,a-1=1-2sin^2\,a\)

\(tan\,2a=\frac{2tan\,a}{1-tan^2\,a}\)

2. Công thức hạ bậc

\(\cos^2\,a = \frac{1+cos\,2a}{2}\)

\(sin^2\,a = \frac{1-cos\,2a}{2}\)

\(tan^2\,a=\frac{1-cos\,2a}{1+cos\,2a}\)

III. Công thức biến đổi tích thành tổng, tổng thành tích

1. Công thức biến đổi tích thành tổng

\(cos\,a\,cos\,b=\frac{1}{2}\)

\(sin\,a\,sin\,b=\frac{1}{2}\)

\(sin\,a\,cos\,b=\frac{1}{2}\)

2. Công thức biến đổi tổng thành tích

\(cos\,u+cos\,v=2cos\,\frac{u+v}{2}cos\,\frac{u-v}{2}\)

\(cos\,u-cos\,v=-2sin\,\frac{u+v}{2}sin\,\frac{u-v}{2}\)

\(sin\,u+sin\,v=2sin\,\frac{u+v}{2}cos\,\frac{u-v}{2}\)

\(sin\,u+sin\,v=2cos\,\frac{u+v}{2}sin\,\frac{u-v}{2}\)

Dưới đây là phần Hướng dẫn trả lời các câu hỏi và bài tập trong phần hoạt động của học sinh sgk Đại số 10.

Câu hỏi

1. Trả lời câu hỏi 1 trang 149 sgk Đại số 10

Hãy chứng minh công thức $sin(a + b) = sina cosb + cosa sinb.$

Trả lời:

Ta có:

\(\eqalign{& \sin (a + b) = \cos \left< {{\pi \over 2} – (a + b)} \right> = \cos \left< {({\pi \over 2} – a) – b)} \right> \cr& = \cos ({\pi \over 2} – a)cos\,b\, + sin({\pi \over 2} – a)\sin b \cr& = \sin \,a\,\cos b\, + \,\cos a\sin b \cr} \)

2. Trả lời câu hỏi 2 trang 152 sgk Đại số 10

Từ các công thức cộng, hãy suy ra các công thức trên.

Xem thêm: Phòng Tạp Chí Khoa Học Đại Học Nguyễn Tất Thành, Thư Viện Đại Học Nguyễn Tất Thành

*

Trả lời:

♦ Từ: $cos⁡(a – b) = cosa cosb + sina sinb$

$cos⁡(a + b) = cosa cosb – sina sinb$

$⇒ cos⁡(a – b) + cos⁡(a + b) = 2cosa cosb$

$⇒ cosa cosb =$ \({1 \over 2}\)$$

♦ Từ: $cos⁡(a – b) – cos⁡(a + b) = 2sina sinb$

$⇒ sinasinb =$ \({1 \over 2}\) $$

♦ Từ: $sin⁡(a – b) = sina cosb – cosa sinb$

$sin⁡(a + b) = sina cosb + cosa sinb$

$⇒ sin⁡(a – b) + sin⁡ (a + b) = 2 sina cosb$

$⇒ sina cosb =$ \({1 \over 2}\) $$

3. Trả lời câu hỏi 3 trang 152 sgk Đại số 10

Bằng cách đặt $u = a – b, v = a + b$, hãy biến đổi $cosu + cosv, sinu + sinv$ thành tích.

Trả lời:

Ta đặt:

\(\left\{ \matrix{u = a – b \hfill \crv = a + b \hfill \cr} \right. \Rightarrow \left\{ \matrix{a = {{u + v} \over 2} \hfill \crb = {{v – u} \over 2} \hfill \cr} \right.\)

\(\eqalign{& + )\,\,\,\cos u + \cos v = \cos (a – b) + \,\cos (a + b) \cr& = \cos a\cos b = \cos {{u + v} \over 2}.cos{{v – u} \over 2} \cr& + )\,\sin u + \sin v = \sin (a – b) + \sin (a + b) \cr& = \sin a\cos b = \sin {{u + v} \over 2}.cos{{v – u} \over 2} \cr} \)

Dưới đây là phần Hướng dẫn giải bài 1 2 3 4 5 6 7 8 trang 153 154 155 sgk Đại số 10. Các bạn hãy đọc kỹ đầu bài trước khi giải nhé!

Bài tập

acsantangelo1907.com giới thiệu với các bạn đầy đủ phương pháp giải bài tập phần đại số 10 kèm bài giải chi tiết bài 1 2 3 4 5 6 7 8 trang 153 154 155 sgk Đại số 10 của Bài §3. Công thức lượng giác trong Chương VI – Cung và góc lượng giác. Công thức lượng giác cho các bạn tham khảo. Nội dung chi tiết bài giải từng bài tập các bạn xem dưới đây:

*
Giải bài 1 2 3 4 5 6 7 8 trang 153 154 155 sgk Đại số 10

1. Giải bài 1 trang 153 sgk Đại số 10

Tính

a) \(\cos {225^0}, \sin {240^0}, cot( – {15^0}), tan{75^0}\);

b) \(\sin \frac{7\pi}{12}\), \(\cos \left ( -\frac{\pi}{12} \right )\), \(\tan\left ( \frac{13\pi}{12} \right )\)

Bài giải:

a) \(\cos{225^0} = \cos({180^0} +{45^0}) = – \cos{45^{0}} = -\frac{\sqrt{2}}{2}\)

\(\sin{240^0} = \sin({180^0} +{60^0}) = – \sin{60^0} = -\frac{\sqrt{3}}{2}\)

\(\cot( – {15^0}) = – \cot{15^0} = – \tan{75^0} = – \tan({30^0} +{45^0})\)

\( = \frac{-\tan30^{0} – \tan45^{0}}{1 – \tan30^{0}\tan45^{0}} = \frac{-\frac{1}{\sqrt{3}}-1}{1-\frac{1}{\sqrt{3}}}=-\frac{\sqrt{3}+1}{\sqrt{3}-1}=-\frac{(\sqrt{3}+1)^{2}}{2} = -2 – \sqrt 3\)

\(\tan 75^0= \cot15^0= 2 + \sqrt3\)

b) \(\sin \frac{7\pi}{12} = \sin \left ( \frac{\pi}{3}+\frac{\pi}{4} \right ) \)

\(=\sin\frac{\pi }{3}\cos\frac{\pi}{4}+ \cos \frac{\pi }{3}\sin\frac{\pi}{4}\)

\( =\frac{\sqrt{2}}{2}\left ( \frac{\sqrt{3}}{2} +\frac{1}{2}\right )\)

\(=\frac{\sqrt{6}+\sqrt{2}}{4}\)

\(\cos \left ( -\frac{\pi }{12} \right ) = \cos \left ( \frac{\pi }{4} -\frac{\pi }{3}\right ) \)

\(= \cos \frac{\pi }{4}\cos\frac{\pi }{3} + sin \frac{\pi }{3}sin \frac{\pi }{4}\)

\( =\frac{\sqrt{2}}{2}\left ( \frac{\sqrt{3}}{2} +\frac{1}{2}\right )\)

\(=\frac{\sqrt{6}+\sqrt{2}}{4}\)

\(\tan \left ( \frac{13\pi }{12} \right ) = \tan(π + \frac{\pi }{12}) = \tan \frac{\pi }{12} = \tan \left ( \frac{\pi }{3}-\frac{\pi}{4} \right )\)

\(= \frac{\tan\frac{\pi }{3}-\tan\frac{\pi }{4}}{1+\tan\frac{\pi }{3}\tan\frac{\pi }{4}}=\frac{\sqrt{3}-1}{1+\sqrt{3}}= 2 – \sqrt3\)

2. Giải bài 2 trang 154 sgk Đại số 10

Tính

a) \(\cos(α + \frac{\pi}{3}\)), biết \(\sinα = \frac{1}{\sqrt{3}}\) và \(0

Bài giải:

a) Vì \(0 0, \cosα > 0\)

\(\cosα = \sqrt{1-\sin^{2}\alpha }=\sqrt{1-\frac{1}{3}}=\sqrt{\frac{2}{3}}=\frac{\sqrt{6}}{3}\)

Vậy: \(cos(α + \frac{\pi}{3}) \)

\(= \cosα\cos \frac{\pi }{3} – \sinα\sin \frac{\pi}{3}\)

\(=\frac{\sqrt{6}}{3}.\frac{1}{2}-\frac{1}{\sqrt{3}}.\frac{\sqrt{3}}{2}\)

\(=\frac{\sqrt{6}-3}{6}\)

b) Vì \( \frac{\pi}{2} 0, \cosα 0, \cos a > 0\)

\(90^0 0, \cos b

3. Giải bài 3 trang 154 sgk Đại số 10

Rút gọn các biểu thức

a) \(\sin(a + b) + \sin(\frac{\pi}{2}- a)\sin(-b)\).

b) \(cos(\frac{\pi }{4} + a)\cos( \frac{\pi}{4} – a) + \frac{1 }{2} \sin^2a\)

c) \(\cos( \frac{\pi}{2} – a)\sin( \frac{\pi}{2} – b) – \sin(a – b)\)

Bài giải:

a) \(\sin(a + b) + \sin\left ( \frac{\pi }{2} – a \right )\sin(-b) \)

\(= \sin a\cos b + \cos a\sin b – \cos a\sin b \)

\(= \sin a\cos b\)

b) \(\cos( \frac{\pi }{4} + a)\cos(\frac{\pi }{4}- a) + \frac{1 }{2}\sin^2a\)

\( =\frac{1 }{2}\cos\left < \frac{\pi }{4}+a+\frac{\pi}{4} -a\right >+\frac{1}{2}\cos\left < \left ( \frac{\pi }{4} +a\right ) -\left ( \frac{\pi}{4}-a \right )\right >+\frac{1}{2}\left ( \frac{1-\cos 2a}{2} \right )\)

\( =\frac{1}{2}\cos 2a + \frac{1}{4}(1 – \cos 2a) \)

\(= \frac{1+\cos 2a}{4 }= \frac{1 }{2}\cos^2 a\)

c) \(\cos( \frac{\pi}{2} – a)\sin( \frac{\pi}{2} – b) – \sin(a – b) \)

\(= \sin a\cos b – \sin a\cos b + \sin b\cos a\)

\(= \cos a\sin b\)

4. Giải bài 4 trang 154 sgk Đại số 10

Chứng minh các đẳng thức

a) \( \frac{cos(a-b)}{cos(a+b)}=\frac{cotacotb+1}{cotacotb-1}\)

b) \(\sin(a + b)\sin(a – b) = \sin^2a – \sin^2b = \cos^2b – \cos^2a\)

c) \(\cos(a + b)\cos(a – b) = \cos^2a – \sin^2b = \cos^2b – \sin^2a\)

Bài giải:

a) \(VT = {{\cos a\cos b+\sin a\sin b}\over{\cos a\cos b-\sin a\sin b}}\)

\(=\frac{\frac{\cos a\cos b}{\sin a\sin b}+1}{\frac{\cos a\cos b}{\sin a\sin b}-1}\)

\(=\frac{\cot a\cot b+1}{\cot a\cot b-1}=VP\) (đpcm)

b) \(VT = <\sin a\cos b + \cos a\sin b><\sin a\cos b – \cos a\sin a>\)

\(= (\sin a\cos b)^2– (\cos a\sin b)^2\)

\(=sin^2\,a\,cos^2\,b-cos^2\,a\,sin^2\,b\)

\(= \sin^2 a(1 – \sin^2 b) – (1 – \sin^2 a)\sin^2 b\)

\(= \sin^2a – \sin^2b \)

\(= \cos^2b( 1– \cos^2a) – \cos^2 a(1 – \cos^2 b) \)

\(= \cos^2 b – \cos^2 a =VP\) (đpcm)

c) \(VT= (\cos a\cos b – \sin a\sin b)(\cos a\cos b + \sin a\sin b)\)

\(= (\cos a\cos b)^2 – (\sin a\sin b)^2\)

\(= \cos^2 a(1 – \sin^2 b) – (1 – \cos^2 a)\sin^2 b \)

\(= \cos^2 a – \sin^2 b\)

\(= \cos^2 b(1 – \sin^2 a) – (1 – \cos^2 b)\sin^2 a \)

\(= \cos^2 b – \sin^2 a =VP\) (đpcm))

5. Giải bài 5 trang 154 sgk Đại số 10

Tính \(\sin2a, \cos2a, \tan2a\), biết

a) \(sin \,a = -0,6\) và \(π 0; \tan a 0; \cos a

6. Giải bài 6 trang 154 sgk Đại số 10

Cho \(\sin 2a = – {5 \over 9}\) và \({\pi \over 2} 0, \cos a

7. Giải bài 7 trang 155 sgk Đại số 10

Biến đổi thành tích các biểu thức sau

a) \(1 – \sin x\)b) \(1 + \sin x\)
c) \(1 + 2\cos x\)d) \(1 – 2\sin x\)

Bài giải:

a) \(1 – \sin x = \sin \frac{\pi }{2} – \sin x \)

\(= 2\cos \frac{\frac{\pi }{2}+x}{2}\sin \frac{\frac{\pi}{2}-x}{2}\)

\(= 2 \cos \left ( \frac{\pi }{4} +\frac{x}{2}\right )\sin\left ( \frac{\pi }{4} -\frac{x}{2}\right )\)

b) \(1 + \sin x = \sin \frac{\pi }{2} + \sin x = 2\sin \left ( \frac{\pi }{4} +\frac{x}{2}\right )\cos \left ( \frac{\pi }{4} -\frac{x}{2}\right )\)

c) \(1 + 2\cos x = 2\left ( \frac{1}{2} + \cos x \right )\)

\(= 2\left ( \cos \frac{\pi}{3} + \cos x \right ) \)

\(= 4\cos \left ( \frac{\pi }{6} +\frac{x}{2}\right )\cos \left ( \frac{\pi }{6} -\frac{x}{2}\right )\)

d) \(1 – 2\sin x = 2\left ( \frac{1}{2} – \sin x \right ) \)

\(= 2\left ( \sin \frac{\pi}{6} – \sin x \right )\)

\(= 4\cos \left ( \frac{\pi }{12} +\frac{x}{2}\right )\sin \left ( \frac{\pi }{12} -\frac{x}{2}\right )\)

8. Giải bài 8 trang 155 sgk Đại số 10

Rút gọn biểu thức \(A = {{{\mathop{\rm s}\nolimits} {\rm{inx}} + \sin 3{\rm{x}} + \sin 5{\rm{x}}} \over {{\mathop{\rm cosx}\nolimits} + cos3x + cos5x}}\).

Bài giải:

Ta có:

♦ \(\sin x + \sin 3x + \sin 5x \) \(= \sin x + \sin 5x + \sin 3x\)

\(= 2\sin {{x + 5x} \over 2}.\cos {{x – 5x} \over 2} + \sin 3x \)

\(= 2\sin 3x + \cos 2x + \sin 3x\) \(= \sin 3x (2\cos 2x + 1)\) (1)

♦ \(\cos x + \cos3x + \cos5x \) \(= \cos x + \cos5x +\cos3x\)

\(= 2\cos3x . \cos2x + \cos3x \) \(= \cos3x (2\cos2x + 1)\) (2)

Từ (1) và (2) ta có:

\(A = {{\sin 3x} \over {\cos 3x}} = \tan 3x\)

Vậy biểu thức \(A= \tan 3x\)

Bài trước:

Bài tiếp theo:

Chúc các bạn làm bài tốt cùng giải bài tập sgk toán lớp 10 với giải bài 1 2 3 4 5 6 7 8 trang 153 154 155 sgk Đại số 10!


Chuyên mục: Tổng hợp